
43

The Best Kept
Secrets to Using
Keyword Search

Technologies
By Philip Sykes

and
Richard Finkelman

Part 1 – Understanding the Search Engines –
A Comparison of dtSearch and Lucene

Introduction

Keyword searching is, and will continue to be, an im-

portant fundamental component of the electronic dis-
covery workspace.

Effectively and correctly used, keyword searching is an

important tool for the initial culling of large datasets prior
to loading into a document review system. Constructing
high-quality searches is a useful skill over the entire span
of the litigation process.

General Information about dtSearch and Lucene

The first step in building powerful searches is to understand how the indexing and search
engines work. The different eDiscovery tools incorporate various indexing and searching solutions.
Some offer more than one.

For example, Relativity uses Microsoft’s SQL Server Full Text Search for the document metadata
and text. SQL Server Full Text Search has limited functionality, so Relativity also incorporates dtSearch
for regular Boolean/proximity searching and Content Analyst for concept searching. Viewpoint also
uses dtSearch. Clearwell, Intella, and SHIFT use Lucene for indexing and searching. This article com-
pares these two indexing/search engines, explaining the similarities and differences.

dtSearch is a widely used indexing/searching tool that provides both Boolean and proximity
searching options. A single-user dtSearch Desktop license costs $199.00 and is so useful that you
should have it in your suite of software for testing keywords regardless of the eDiscovery applications
that you use. dtSearch Desktop provides you with the capability to perform preliminary testing of
key custodians’ data. This is particularly important when you will be using a solution that uses other
indexing/searching technology, since it gives you a control set to use for comparison with the results
from the solution’s searching tools.

Another reason why dtSearch is useful is that the syntax of the searches is similar to the syntax
used by Concordance for full-text searching. If you have built your searches with dtSearch, it’s easy to
transform the searches to run in Concordance. In addition, many people who work on drafting
proposed keyword terms build their lists with a dtSearch/Concordance–compatible structure.

Lucene is an open-source (free) indexing and searching tool that has been used extensively
to implement internet search engines. A number of eDiscovery solutions, including Clearwell, Intella,
and SHIFT, use this technology, although there are differences in the way the developers have
customized Lucene in the various tools. The same search may perform differently when used with
these solutions, even with the same set of documents.

Differences between dtSearch and Lucene

Indexing

dtSearch and Lucene index some characters differently. Lucene treats all punctuation and
symbols as word breaks. dtSearch is somewhat different, as it assigns all characters to one of four
Character Types (Figure 1):

“If you have built your

searches with dtSearch, it’s

easy to transform the

searches to run in

Concordance.”

44

45

Figure 1: Character Types

dtSearch’s treatment of characters is the same as Lucene except for two symbols—at least, if the default
alphabet file hasn’t been customized. The first difference is that dtSearch treats "_" as a letter, meaning it is
indexed and there is no word break. So Smith_Tom would be indexed as a single word by dtSearch, whereas
Lucene would treat it as two words: Smith and Tom.

The other difference is "%", which Lucene treats as a word break, while dtSearch sets it to Ignored
and does not treat it as a word break. So Tom%Smith would be indexed as two separate words by Lucene
(Tom and Smith), while dtSearch ignores the "%" and adds the word TomSmith to the index. (Note: the "%"
is a reserved character in dtSearch that is used for fuzzy searching, so you may see it in search strings.)

The Hyphen Character Type, which by default only includes the hyphen character, is unique because
when you build or update an index you have choices on how the Hyphen Character Type is treated (Figure
2).

“dtSearch is a widely used

 indexing/searching

 tool that provides

 both Boolean and

proximity searching options.

A single user license is $199.”

46

Figure 2

If you select "All three" for Hyphens, the indexing of company-wide would cause the word to be indexed all
three ways:

• Spaces, so there are two separate searchable words: company and wide

• Searchable, so company-wide could be searched separately from company wide

• Ignored, so companywide would be searchable.

dtSearch uses a list of Noise (Stop) Words that contains words that are considered too common to
provide any value. In addition to common words like all, for, it, this, and was, dtSearch includes the letters a
and i as noise words. All other single letters are indexed. dtSearch Desktop allows customization of the noise
words list, but embedded versions of dtSearch often do not. One thing to note with dtSearch is how the
hit-highlighting appears when there are noise words in your search. If you search for the phrase the records,
when the hits are displayed in context every occurrence of records will be highlighted, as well the word im-
mediately preceding it, since the is a noise word. So all records and some records would be considered hits,
and both pairs of words would be highlighted.

For Lucene, the use of noise word lists depends upon the tool being used. Some, like Intella, do not
use noise words; others do. You will need to refer to the tool’s documentation or execute test searches to
determine whether or not all words were indexed.

47

Wildcards

Both dtSearch and Lucene support wildcard characters using "?" as a single-letter wildcard and
"*" as a multi-character wildcard. However, Lucene does not support wildcards inside quotation marks.
So the search ["sales agreement*"] is an acceptable search using dtSearch, but Lucene ignores the wild-
card character and displays results for the search ["sales agreement"]. (Note: in all search syntax
examples, the actual search syntax will be inside square brackets "[]".)

Boolean Searches

Both dtSearch and Lucene provide Boolean and proximity searching. When using dtSearch,
always have the "Search for" option set to Boolean.

dtSearch

When using dtSearch with the "Search for" option set to Boolean, a series of words is treated as
a phrase, and quotation marks are not needed. (Note: if "Search for" is set to "Any words," then the list
will be treated as if the words were joined by "OR"; if it is set to "All words," the list will be treated as if
the words were joined by "AND.")

Lucene

Lucene’s behavior depends upon the customization of the searching by the tool’s software
development team. Some tools treat a list of terms as if each word is separated by OR, and others treat
them as if they were separated by AND.

If you run the search [sales agreement] in dtSearch, it returns documents containing the exact
phrase sales agreement. Lucene would return all documents containing either sales OR agreement, or
containing sales AND agreement anywhere in the document, depending on the tool’s configuration. The
best search in Lucene would be [“sales agreement”], since the results would not depend on how lists of
individual words are treated.

While Lucene supports a list of terms separated by spaces to search for words, it’s recommended
that the terms be separated by AND or OR to aid in clarity, since others may not be familiar with the
Lucene syntax, and so the query will perform the same in any tool based upon Lucene.

Proximity searching

Proximity searching with dtSearch and Lucene is very different, both in the syntax and how it
works.

dtSearch Proximity Searching Syntax

Proximity searches in dtSearch can use either of two operators: W/ and PRE/. So the search
[(records w/5 filed)] would return all documents where records has no more than four words between it
and filed, regardless of the order in which records and filed appear. The search [(records PRE/5 filed)]
would return all documents where records has no more than four words between it and filed and
where records appears before filed. dtSearch accepts phrases and Boolean operators within proximity
searches; for example, [(sales agreement w/6 (jones OR smith))].

As an example, we will use two documents. The first, which is returned by this search, contains the
text:

48

“Sales agreement that was executed by William Jones and Thomas Smith.”

The second, which is not returned by this search, contains the sentence:

“Agreement for sales to William Jones by Thomas Smith.”

Note that while the phrase sales agreement must exist in the document for it to be returned by the search, only
the last word in the phrase (in this example, agreement) must be within six words of either jones or smith for the
document to be returned by the search. In this case, the terms agreement and jones are highlighted. If we
increase the word count from six to seven, then both sales and agreement are within seven words of jones, so
sales, agreement, and jones are highlighted.

Lucene Proximity Searching Syntax

Lucene’s proximity search syntax is [“Term1 Term2”~N], where “N” is the “edit distance” between the
terms. However, Lucene’s approach to proximity searching is different than that used by dtSearch. Where
dtSearch counts words, Lucene counts the edit distance value needed to match the words in the text to the
words in the search, in the same order they appear in the search.

Therefore, if the query is [“price stock”~4], it is possible that different results will be returned by the
search, only the last word in the phrase (in this example, agreement) must be within six words of either jones
or smith for the document to be returned by the search. In this case, the terms agreement and jones are
highlighted. If we increase the word count from six to seven, then both sales and agreement are within seven
words of jones, so sales, agreement, and jones are high- lighted.

Continuing with the example [“price stock”~4], if we have a document that contains the text “stock
has a current price,” it takes four shifts to the left to get price in the first position, so the minimum edit
distance value is −4; it takes one shift to the right to get stock in the second position, so the maximum
edit distance is +1. Subtracting the minimum from the maximum (1 – (−4)) = 5, so this document would not
be returned by this search. It would be returned by [“stock price”~4], because stock is already in the first
position, and only three shifts to the left are needed to get price into the second position.

Again, subtracting the minimum from the maximum (0 – (−3)) = 3, which is less than the specified
edit distance of 4.

dtSearch and Lucene Proximity Search Comparison

For examples of how dtSearch and Lucene work differently, we will use four different text strings:

1. “price of the company’s stock”

2. “stock doesn’t have an increased price”

3. “price of the common stock”

4. “stock increase when the price”

49

Using dtSearch, the minimum word count to obtain results is four. The query [(price w/4 stock)]
returns numbers 3 and 4. The query [(price w/5 stock)] returns numbers 1, 3, and 4. (Note: the reason why
number 1 was picked up by "w/5" but not "w/4" is that the apostrophe in "company’s" is Character Type
"space" and thus creates a word break.) The query [(price w/6 stock)] returns all four of the strings.

Reversing the term order in these queries has no impact on the results. If we switch to the query
[(price PRE/6 stock)], only numbers 1 and 3 are returned. Conversely, if we search using the query [(stock
PRE/6 price)], numbers 2 and 4 are returned.

Switching to Lucene, the minimum distance with results is three. The query ["price stock"~3] returns
only number 1. Both numbers 1 and 3 are returned by ["price stock"~4]. The query ["price stock"~5] returns
numbers 1, 3, and 4 (which contains the words in reverse order to the query). The query ["price stock"~7]
returns all four strings. Reversing the order of the terms in the query changes the results.

Using ["stock price"~3] returns number 4.

Table 1 summarizes the results:

“Some tools treat a list of terms as if

each word is separated by OR, and others

treat them as if they were

separated by AND.”

50

Lucene also supports more than two terms within the quotes but, since the terms are inside quotes,
wildcards are not permitted, and Lucene doesn’t support the use of Boolean operators inside quotes.

If we need to adapt the dtSearch Boolean operator example [(sales agreement w/6 (jones OR smith))]
to Lucene, it would require two proximity searches in order to deal with the OR. The most precise search
would be [("sales agreement" AND "agreement jones"~N) OR ("sales agreement" AND "agreement smith"~N)].
The value of N will need to be determined through testing, but a good place to start would be N=5, since it’s
the dtSearch distance minus one.

A less-precise search would be [“sales agreement jones”~N OR “sales agreement smith”~N]; it is less
precise in that it doesn’t require the exact string sales agreement, so the terms could be in any order and not
adjacent as long as sales, agreement, and jones or smith were within an edit distance of N.

Table 2 shows the value of N required to return this document (they all actually return both
documents—a smaller value of N will return the second document, which has sales and agreement, but not
sales agreement) using the same two documents as above, with the six possible orders of the three terms:

The above example was designed to show the impact of the term order differences on the value of N.
In the real world when using Lucene proximity searches, the best approaches are:

If there are two words in the search, decide on the optimum number of words between the terms
without regard to the term order, and run that search. For example, run the search "stock price"~4. After
obtaining the results, run the search again with the terms reversed: "price stock"~4.

The results will normally be lower or higher than the first search. In order to check whether or not the
value of N should be adjusted, perform "gap" queries for the search that returned the larger number of
documents. For example, run the search [(("stock price"~5) AND NOT (("stock price"~4) OR ("price
stock"~4)))], which will show the documents found by the new value of N that were not found by the previous
value of N in either term order. Once you are satisfied with the value of N, which we'll assume is 4, then just
run the search as [("stock price"~4 OR ("price stock"~4)].

51

If there are more than two words in the search, it becomes more difficult to test individual searches
with the terms in different order (Note also that Lucene doesn’t include the edit distances for each of the
terms in calculating the total edit distance for the document; it only uses the one that is the maximum value
and subtracts the minimum value from it.).

Therefore, the most reasonable approach would be to start with an acceptable value for N and note
the results. Then increase the value of N by the number of terms and note those results. Continue to run the
search incrementing the value of N and run "gap" queries to return the documents from the search with the
largest N value that were not in the previous N value search until the "gap" queries are not bringing back
documents that belong in the review set.

For example, if the search ["term1 term2 term3"~8] returns 500 documents and the search ["term1
term2 term3"~10] returns 600 documents, then run the "gap" query [("term1 term2 term3"~10) AND NOT
("term1 term2 term3"~8)], and review the documents returned. If there are potential relevant documents,
increase the values of N to [(“term1 term2 term3”~11) AND NOT (“term1 term2 term3”~10)], and review the
documents returned.

Up Next
Part 2 will cover using structured search techniques to build your keyword searches.

About the Authors

Philip Sykes is a Senior Managing Consultant with more than 20 years of experience working in
the fields of litigation support and electronic discovery. His experience includes work on high-profile cases
from HSR Second Requests from the FTC and DOJ to IP matters to complex securities cases. His expertise
includes keyword analytics, data processing and analysis, data management, on-line review tools, and
document productions. He regularly assists counsel and experts in understanding what information
exists in databases and how it is relevant to their matters.

Richard Finkelman is a Director and Practice Group Leader of Berkeley Research Group’s
Electronic Discovery Practice. Mr. Finkelman brings more than 25 years of experience helping clients manage
information in litigation, regulatory and business matters. His experience includes assisting clients with all
aspects of litigation support in complex matters ranging from Securities Class Actions to Intellectual Property
Disputes to high profile Regulatory matters.

